A NEW METHOD OF SYNTHESIZING N-SUBSTITUTED ISOPHTHALIMIDES

É. V. Ganín, V. F. Anikin, B. V. Rozynov,

UDC 547.584'46'053.1

V. F. Makarov, and G. L. Kamalov

N-Substituted isophthalimides are obtained by the dehydration of N-substituted phthal-amic acids [1].

$$\begin{array}{c} \begin{array}{c} \text{C1} \\ \text{C1} \\ \end{array} + \begin{array}{c} \text{RNH}_2 \end{array} - \frac{(c_2 H_5)_3 N}{-(c_2 H_5)_3 N \cdot \text{HCI}} \\ \\ \text{R=n-} \\ \text{C}_4 H_6; \text{ t-} \\ \text{t-} \\ \text{C}_5 H_{11}; \text{ } \\ \text{C}_6 H_5 \end{array}$$

We have established that N-isophthalimides are formed rapidly and in good yields by the interaction of equimolar amounts of phthaloyl chloride and a primary amine using triethylamine as dehydrochlorinating agent. A solution of 0.01 mole of phthaloyl chloride in 100 ml of absolute benzene was added at 20°C to 100 ml of a benzene solution containing 0.01 mole of N-butylamine, tert-amylamine, or aniline, and 0.04 mole of triethylamine, and the mixture was kept for 5 min and filtered, and the filtrate was washed with 4 250 ml of water. The benzene was distilled to give: n-butylisophthalimide, oil, yield 91%; tert-amylisophthalimide, mp 82-83°C, yield 92%; and phenylisophthalimide, mp 118-119°C, 94%. The individuality of the compounds was checked by TLC on Silufol UV-264 with acetone—hexane (1:5), the spots being detected in UV light (quenching) and with ninhydrin (red colorations). The compositions of the N-substituted isophthalimides obtained were confirmed by elementary analysis and their structure by IR and mass spectra.

LITERATURE CITED

1. M. K. Hargreaves, J. G. Pritchard, and H. R. Dave, Chem. Rev., No. 4, 439 (1970).

I. I. Mechnikov Odessa State University. All-Union Scientific-Research and Design Institute of Monomers, Tula. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, p. 1280, September, 1984. Original letter submitted August 30, 1983.